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Momentum Transport from Nonlinear Mode Coupling of Magnetic Fluctuations
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A cause of observed anomalous plasma momentum transport in a reversed-field pinch is determined
experimentally. Magnetohydrodynamic theory predicts that nonlinear interactions involving triplets of
tearing modes produce internal torques that redistribute momentum. Evidence for the nonlinear torque
is acquired by detecting the correlation of momentum redistribution with the mode triplets, with the
elimination of one of the modes in the triplet, and with the external driving of one of the modes.
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Plasmas often exhibit momentum transport and flow
phenomena that are not explained by classical collisional
processes. In this Letter, we present experimental evidence
for a cause of rapid momentum transport in the reversed
field pinch (RFP) toroidal configuration. It has been ob-
served in RFP plasmas that the radial profile of the toroidal
plasma rotation can change rapidly and spontaneously, rep-
resenting a rapid radial transport of toroidal momentum
[1,2]. The effect cannot be explained by a classical pro-
cess since it is very fast (around 100 ws), about 2 orders
of magnitude more rapid than what would be expected
from classical viscosity. Prior measurements made in the
Madison Symmetric Torus (MST) [3] RFP found global
momentum transport to be anomalous [4]. Other measure-
ments in MST indicate that the rotation of a mode and
the flow of the plasma at the same radius track each other
closely in time [5]. We will therefore treat the plasma
in a single-fluid MHD model, so that any force produces
changes in the momentum of the single fluid. In the RFP,
magnetic reconnection (tearing instability) occurs at mul-
tiple radial locations. We find strong evidence that the
momentum transport is a nonlinear effect that arises from
the three-wave coupling between tearing modes.

Since this three-wave coupling results in an electro-
magnetic force, we begin with the Lorentz force density
at a given location x in the plasma, which is F(x) =
J(x) X B(x), where F is the force density, J is the cur-
rent density, and B is the magnetic field. The contribution
from fluctuations to the mean force density is given by

J X B)fluet = Z<jk X bk),
k

where j is the current density fluctuation, b is the magnetic
field fluctuation, k are wave vectors of the fluctuations, and
() denotes an ensemble average approximating an average
over a magnetic surface. Resistive magnetohydrodynamic
(MHD) theory, in the limit of large electrical conductivity,
predicts that this force vanishes for tearing modes except at
the resonant surface where k - (B) = 0 [6]. Therefore, for
a mode with given k, the fluctuation-driven mean Lorentz
force density at its resonant surface is Fi, = ( jk X by).
This force is responsible for the well-studied phenomenon
of mode locking in which a tearing mode becomes locked
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to an external magnetic field structure [7—13]. If the mag-
netic structure is a static field error, then the mode becomes
stationary in the lab frame. In this case j is the current
density induced at the resonant surface by the field error
(Jk = bfe, the resonant error field), and the force density
is proportional to the product of the magnetic fields from
the field error and the tearing mode: Fy « by, xbx where
bk is the amplitude of the preexisting tearing mode.

In the RFP, the current density jk can also be genera-
ted by a nonlinear interaction involving two other modes
which satisfy the sum rule k’ + k” = k [14,15]. In this
case, an eddy current is nonlinearly driven at the rational
surface by two tearing modes, i.e., jx < byg/bg», where by
and by are tearing modes. The force density on the surface
resonant with K is then Fx o by bg»by. The physics of the
mode acceleration is similar to mode locking to a field er-
ror, except that the resonant current is driven nonlinearly,
rather than by a field error. However, whereas a field er-
ror can impart net momentum to the plasma, the nonlinear
forces are mutual interactions between resonant surfaces.
The multiple torques at different resonant surfaces sum to
zero, imparting no net momentum to the plasma. Rather,
they redistribute the momentum and change the flow pro-
file. Hence, they yield an anomalous viscosity arising from
within MHD theory. We observe the nonlinear torques first
by measurement of the appropriate fluctuation triplet and
second by a series of experiments that selectively alter the
amplitude of individual modes in the triplet to test the re-
sponse of the plasma rotation.

The experiments were performed in the MST RFP. In
MST, as in other axisymmetric toroidal magnetic confine-
ment devices, fluctuation activity is typically described in
terms of Fourier decomposition in the angle variables, i.e.,
£ o lm0=nd) where € is a generic fluctuation, m is the
poloidal mode number, 6 is the poloidal angle, n is the
toroidal mode number, and ¢ is the toroidal angle. A set
of 32 equally spaced coil forms with poloidal and toroidal
coils is used to measure the tearing mode fluctuation am-
plitudes in MST for all three experiments to be discussed.
These coils reside on the inside surface of the vacuum
vessel, and have a frequency response of about 100 kHz.
The signals are analog integrated and the toroidal mode
spectra are extracted from the integrated data through a
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discrete Fourier transform. The (m = 1,n = 6) mode is
the largest of the core-resonant modes (m = 1,n = 5-9),
and we will use its phase velocity to represent the core
rotation. To quantify the edge kinematics, we will use
the velocity of the (0,1) mode which is the largest of the
edge-resonant m = 0 modes.

In MST, under normal experimental conditions, most of
the global plasma parameters exhibit large changes dur-
ing sawtooth oscillations [cf. Figs. 1(a) and 1(b)]. The
rotation of the core plasma and the core-resonant tear-
ing modes periodically exhibits rapid deceleration during
the crash phase of sawtooth oscillations [Fig. 1(c)]. The
core rotation decelerates during a sawtooth crash in about
100 wsec. The sudden change in rotation is not due to a
magnetic field error. This is demonstrated by an experi-
ment in which a radial electric field is applied (by a biased
electrode inserted into the edge plasma) to spin the edge
plasma in the opposite direction to the normal (unbiased)
direction of the core flow (Fig. 2) [16]. Under these con-
ditions the core plasma rotates in the same direction as the
edge, although more slowly. The core rotation speeds up
during the sawtooth crash, while the edge rotation slows
[Fig. 3(b)]. This effect cannot be explained by a station-
ary field error; in both the biased and unbiased plasma, the
rotation profile is flattened at the crash (Fig. 3). Note from
Fig. 3(a) that the (0,1) mode’s speed in unbiased events
is small. This is presumably due to strong coupling to the
wall and allows for a net change in the plasma momentum.

For our experiments concerning the nonlinear torque we
will focus on the rotation of the (1,6) mode. The nonlinear
torque on this mode is due to three-wave interactions with
the (1,5) mode or the (1,7) mode and the (0,1) mode, and
also with the (1,8) and (0,2) modes, etc. We perform three
experiments to test the thesis that the nonlinear torque is
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FIG. 1. (a) Volume averaged toroidal field. (b) Average
toroidal field at plasma edge (r = a). (c) Toroidal phase
velocity of (1,6) mode, in a typical MST discharge.

the cause of the sudden changes in rotation during saw-
tooth crashes. First, we measure correlated triple products
of three modes, and observe that they change rapidly, si-
multaneously with the sudden change in rotation. Second,
we eliminate the three-wave interaction by suppressing the
(0,1) mode [by adjusting the equilibrium to eliminate the
(0,1) resonant surface], and find that during the sawtooth
crash the rapid change in rotation disappears. Third, we
apply a static external (1,6) perturbation, and find that the
other modes (n = 5,7, 8) decelerate, in addition to the di-
rectly affected n = 6 mode.

Our first experiment was to measure the correlated triple
products of mode amplitudes that are characteristic of the
nonlinear torque (cf. [14]):

NL (1,6)
T(1,6) = Z C(m,n),(rn*1,n*6)b(l,ﬁ)b(m,n)b(mfl,nfﬁ)
)

(m,n

X sin(8(mn)y — 6(1.6) = Sm—1.1-6))> (1)

where C((,l,,’,én)),(m,lyn,(,) are the nonlinear coupling coeffi-
cients, by ) is the amplitude of the (m,n) mode, and
S(mn) is the phase of the (m,n) mode. It was not fea-
sible to measure the coupling coefficients directly, so we
present instead the three largest of the triple products in
Eq. (1), without the coefficients. We have averaged the
measured mode amplitudes and the sines of the phase dif-
ferences over a large ensemble of about 700 similar saw-
tooth events in order to approximate a surface average.

The results are summarized in Fig. 4. In Fig. 4(a) is
plotted the average (m = 1,n = 6) mode phase velocity
for the ensemble. Zero time corresponds to the time of
maximum toroidal flux generation. Of particular interest is
the sharp deceleration prior to the sawtooth event and slow
reacceleration following it. In Fig. 4(b), the measured
nonlinear mode triple products:
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FIG. 2. Evolution of (1,6) and (0,1) mode toroidal phase ve-
locities with edge biasing. The velocities are averaged over
approximately 40 discharges.
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FIG. 3. Ensemble averaged toroidal phase velocities for the

(1,6) and (0,1) modes in (a) normal and (b) biased cases. Note
the difference in the vertical scales.
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FIG. 4. Ensemble-averaged quantities for tripleproduct mea-
surement. (a) (1,6) mode toroidal phase velocity. (b) Nonlinear
triple products. (c¢) (m = 1) mode amplitudes. (d) (m = 0)
mode amplitudes. (e) Phase factors.
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are plotted. The amplitudes of Pi4; and Pigs are about
3 times larger than Pcg and peak during the sawtooth
crash concurrent with the deceleration of the (1, 6) mode,
whereas Pyeg changes sign at the crash. All three terms
vanish during the slow reacceleration phase between
crashes. The time variation of the triple products arises
from changes in both the amplitudes and relative phases
of the modes.

The amplitudes of the individual modes are plotted in
Figs. 4(c) and 4(d). All show bursts of increased ampli-
tude near the sawtooth event. The ensemble averages of the
sines of the mode phase differences are plotted in Fig. 4(e).
These quantities are nearly zero away from the sawtooth
event because the modes are uncorrelated, and they be-
come about 1/2 during the event, as the modes become
phase locked to each other.

Having found evidence for the role of the nonlinear
torque in producing anomalous momentum transport dur-
ing sawtooth events, we next set out to modify it. The
m = 0 resonance was removed by changing the equi-
librium magnetic field configuration such that the edge
toroidal field was not reversed, implying that there is no
location in the plasma at which the safety factor, ¢, is zero.
Hence internally resonant m = 0 modes are absent.

The large deceleration in the m = 1 modes (cf. Fig. 1)
is not seen, as is apparent in Fig. 5(a). The m = 1 modes
still exhibit burst behavior, as shown in Fig. 5(b). How-
ever, the (0,1) amplitude is near the noise limit for its
detection, and no bursts are observed [Fig. 5(c)]. By re-
moving the m = 0 channel for nonlinear coupling, we
have eliminated most of the deceleration of the m = 1
modes. The small residual changes in the mode veloc-
ity coincident with the m = 1 bursts can be accounted for
by other effects such as torques due to field errors.

In the final experiment we apply a static n = 6, broad-
band m magnetic perturbation. MST has a thick (5 cm)
aluminum shell/vacuum vessel with an electromagnetic
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FIG. 5. Discharge with no (m = 0) resonance. (a) (1,6) mode

toroidal phase velocity. (b) (1,6) mode amplitude.
mode amplitude.
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FIG. 6. Discharge with applied n = 6 perturbation. (a) (m =
1) component of (n = 6) perturbation. (b) (m = 1,n = 5-8)
mode toroidal phase velocities

skin time long compared to the length of a discharge (about
50 ms). We have therefore utilized the 1 c¢cm horizon-
tal cut in the shell to apply an n = 6 perturbation. We
position wires outside the vacuum vessel, such that they
pass through the cut in an n = 6 pattern. The n = 6 per-
turbation thus produced exceeds the n = 5,7, 8 perturba-
tions (generated by imperfections in the wire placement)
by about an order of magnitude. Since the width of the cut
is much smaller than the plasma minor circumference the
m spectrum of the perturbation is quite broad. However,
forn = 6, only the m = 0 and m = 1 harmonics are reso-
nant. Hence, the system is effectively selective in poloidal
mode number, despite the limited poloidal access.

The stationary n = 6 (m = 1) perturbation is applied at
20 ms [Fig. 6(a)]. In response to the perturbation, all of the
dominant core-resonant modes (m = 1,n = 5,6,7,8) be-
come locked (achieve zero phase velocity in the lab frame),
as seen in Fig. 6(b). The rapid effect of the n = 6 pertur-
bation on other modes is consistent with nonlinear torques
acting on the modes, although other sources of anomalous
viscosity may also be present to couple mode rotation. Ex-
periments have been performed on the RFX RFP in which
signatures of a nonlinear interaction are seen when a rotat-
ing (m = 0,n = 1) perturbation is applied [17].

In summary, we have determined experimentally that
magnetic fluctuations can drive anomalous transport of
momentum via internal electromagnetic forces. In the
RFP, the effect arises from forces generated by three-wave
nonlinear interactions predominantly involving twom = 1
modes and an m = 0 mode. We observe that the correlated
triple wave products vary in time and peak during the pe-

riod of strongest core mode (and plasma) deceleration. By
selectively removing the (0,1) mode the sudden change de-
celeration of the core modes at sawteeth can be essentially
eliminated. Finally, by selectively driving the (1,6) mode
the rotation of the other m = 1 modes is affected. These
active experiments further support the presence of non-
linear interactions. Other mechanisms, such as parallel
particle diffusion along stochastic magnetic field lines,
may produce anomalous momentum transport as well.
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